Основы безопасности жизнедеятельности

         

Огнестойкости строительных конструкций

Категории помещений определяются путем последовательной проверки принадлежности помещения к категориям от высшей (А) к низшей (Д). Категорию здания определяют согласно следующим рекомендациям:

– здание относится к категории А, если в нем суммарная площадь помещений категории А превышает 5 % всех помещений, или 200 м2. В блучае оборудования помещений установками автоматического пожаротушения допускается не относить к категории А здания и сооружения, в которых доля помещений категории А менее 25 % (но не более 1000 м2);

– к категории Б относят здания и сооружения, если они не относятся к категории А и суммарная площадь помещений категорий А и Б превышает 5 % суммарной площади всех помещений, или 200 м2, допускается не относить здание к категории Б, если суммарная площадь помещений категории А и Б в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 1000 м2) и эти помещения оборудуют установками автоматического пожаротушения;

– здание относится к категории В, если оно не относится к категории А или Б и суммарная площадь помещений категорий А, Б и В превышает 5 % (10 %, если в здании отсутствуют помещения категорий А и Б) суммарной площади всех помещений. В случае оборудования помещений категории А, Б и В установками автоматического пожаротушения допускается не относить здание к категории В, если суммарная площадь помещений категории А, Б и В не превышает 25 % (но не более 3500 м2) суммарной площади всех размещенных в нем помещений;

– если здание не относится к категориям А, Б и В и суммарная площадь помещений А, Б, В и Г превышает 5 % суммарной площади всех помещений, то здание относится к категории Г; допускается не относить здание к категории Г, если суммарная площадь помещений категорий А, Б, В и Г в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 5000 м2), а помещения категорий А, Б, В и Г оборудуют установками автоматического пожаротушения;

– здания, не отнесенные к категориям А, Б, В и Г, относят к категории Д.



На объектах категорий В, Г и Д возникновение отдельных пожаров будет зависеть от степени огнестойкости зданий, а образование сплошных пожаров – от плотности застройки.

Под огнестойкостью понимают способность строительной конструкции сопротивляться воздействию высокой температуры в условиях пожара и выполнять при этом свои обычные эксплуатационные функции.

Время (в часах) от начала испытания конструкции на огнестойкость до момента, при котором она теряет способность сохранять несущие или ограждающие функции, называется пределом огнестойкости.

Потеря несущей способности определяется обрушением конструкции или возникновением предельных деформаций и обозначается индексом R. Потеря ограждающих функций определяется потерей целостности или теплоизолирующей способности. Потеря целостности обусловлена проникновением продуктов сгорания за изолирующую преграду и обозначается индексом Е. Потеря теплоизолирующей способности определяется повышением температуры на необогреваемой поверхности конструкции в среднем более чем на 140 °С или в любой точке этой поверхности более чем на 180 °С и обозначается иднексом J.

Основные положения методов испытаний конструкций на огнестойкость изложены в ГОСТ 30247.0–94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования» и ГОСТ 30247.1–94 «Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции».

Степень огнестойкости здания определяется огнестойкостью его конструкций в соответствии с табл. 8.2 (СНиП 21–01–97).

Таблица 8.2. Огнестойкости строительных конструкций



Степень огнестойкости здания

Максимальные пределы огнестойкости строительных конструкций

несущие элементы здания

наружные стены

перекрытия междуэтажные чердачные и над подвалом

покрытия бесчердач-ные

лестничные клетки

внутренние площадки стены

марши лестниц

I

II

III

IV

R120

R45

R15

RE30

RE15

RE15

REJ60 REJ45 REJ15

RE30

RE15

RE15

REJ120 REJ90 REJ45

R60

R45

R30

IV

Не нормируется

<


СНиП 21–01– 97 регламентирует классификацию зданий по степени огнестойкости, конструктивной и функциональной пожарной опасности. Эти нормы введены в действие с 1 января 1998 г.

Класс конструктивной пожарной опасности здания определяется степенью участия строительных конструкций в развитии пожара и образовании его опасных факторов.

По пожарной опасности строительные конструкции подразделяются на классы: КО, Kl, K2, КЗ (ГОСТ 80–403–95 «Конструкции строительные. Метод определения пожарной опасности»). Класс пожарной опасности конструкции определяется по табл. 8.3 (по наименее благоприятному фактору).

Таблица 8.3. Классы пожарной опасности конструкции

Класс по-

Допустимый размер

Наличие

Допускаемые характеристики по-

жарной

повреждения конст-

жарной опасности поврежденного

опасности

ции, см

материала

конструк-

Вертика-

Горизон-

теплового

горения

Группа

ции

льные

тальные

эффекта

горючести

воспламе-

дымообра-

няемости

зующей

Способно-

сти

КО

0

0

Н.Д.

НД.







Kl

До 40

До 25

Н.Д.

Н.Д.

Н.Р.

Н.Р.

Н.Р

»

»

Н.Р.

Н.Р.

Г2

В2

Д2

K2

Более

Более

Н.Д.

Н.Д.

Н.Р.

Н.Р.

Н.Р

40, но до

25, но до

80

50

»

»

Н.Р.

Н.Д.

ГЗ.

ВЗ

Д2

КЗ

Н.Р.

<


Примечание: Н.Д.– не допускается; Н.Р.– не регламентируется; обозначение группы горючести поврежденного материала приняты по ГОСТ 30244, воспламеняемости по ГОСТ 30402. Дымообразующая способность Д2 соответствует материалам с умеренной дымообразующей способностью по ГОСТ 12.1.044.

Здания и пожарные отсеки по конструктивной пожарной опасности подразделяются на классы согласно табл. 8.4.

Таблица 8.4. Классы конструктивной пожарной опасности здания

Класс конструктивной пожарной опасности здания

Допускаемые классы пожарной опасности строительных конструкций

Несущие стержневые элементы (колонны, ригели, фермы и ДР)

Стены наружные с внешней стороны

Стены, перегородки и перекрытия и бесчердачные покрытия

Стены лестничных клеток и противопожарные преграды

Марши и площадки лестниц

СО

С1

С2

КО

К2

КЗ

К1

К2

КЗ

КО

К1

К2

КО

КО

К1

КО

КО

К1

С3

Не нормируется

По функциональной пожарной опасности здания и помещения подразделяются на классы в зависимости от способа их использования и от того, в какой мере безопасность людей в них, в случае возникновения пожара, находится под угрозой, с учетом их возраста, физического состояния, сна или бодрствования, вида основного функционального контингента и его количества.

К классу Ф1 относятся здания и помещения, связанные постоянным или временным проживанием людей, в который входят:

– Ф1.1–детские дошкольные учреждения, дома престарелых и инвалидов, больницы, спальные корпуса школ-интернатов и детских учреждений;

– Ф1.2–гостиницы, общежития, спальные корпуса санаториев и домов отдыха, кемпингов и мотелей, пансионатов;

– Ф1.3–многоквартирные жилые дома;

–        Ф1.4–индивидуальные, в том числе блокированные дома.

К классу Ф2 относятся зрелищные и культурно-просветительские учреждения, в который входят:

– Ф2.1–театры, кинотеатры, концертные залы, клубы, цирки, спортивные сооружения и другие учреждения с местами для зрителей в закрытых помещениях;



– Ф2.2–музеи, выставки, танцевальные залы, публичные библиотеки и другие подобные учреждения в закрытых помещениях;

–        Ф2.3– то же, что Ф2.1, но расположенные на открытом воздухе.

К классу ФЗ относятся предприятия по обслуживанию населения:

– Ф3.1–предприятия торговли и общественного питания;

– Ф3.2–вокзалы;

– ФЗ.З– поликлиники и амбулатории;

– Ф3.4–помещения для посетителей предприятий бытового и коммунального обслуживания населения;

– Ф3.5–физкультурно-оздоровительные и спортивно-тренировочные учреждения без трибун для зрителей.

К классу Ф4 относятся учебные заведения, научные и проектные организации:

– Ф4.1– общеобразовательные школы, средние специальные учебные заведения, профтехучилища, внешкольные учебные заведения;

– Ф4.2–высшие учебные заведения, учреждения повышения квалификации;

– Ф4.3–учреждения органов управления, проектно-конструкторские организации, информационно-издательские организации, научно-исследовательские организации, банки, офисы.

К пятому классу относятся производственные и складские помещения:

– Ф5.1–производственные и лабораторные помещения;

– Ф5.2–складские здания и помещения, стоянки автомобилей без технического обслуживания, книгохранилища и архивы;

– Ф5.3–сельскохозяйственные здания.

Производственные и складские помещения, а также лаборатории и мастерские в зданиях классов Ф1, Ф2, ФЗ, Ф4 относятся к классу Ф5.

Согласно ГОСТ 30244–94 «Материалы строительные. Методы испытаний на горючесть» строительные материалы, в зависимости от значения параметров горючести, подразделяются на горючие (Г) и негорючие (НГ) (табл. 8.5).

Таблица 8.5. Характеристики групп горючести строительных материалов

Группа горючести материалов

Параметры горючести

Температура дымовых газов t ° С

Степень повреждения по длине, Si%

Степень повреждения по массе Sm, %

Продолжительность самостоятельного горения tсr, °С

Г1

Г2

ГЗ

Г4

< 135

<235

<450

>450

<65

<85

>85

>85

<20

<50

<50

>50

0

<30

<300

>300

НГ

Прирост температуры в печи за счет горения образца не превысил 50?С, потеря массы образца была не более 50 %, а продолжительность пламенного горения не более 10 ?С

<


Определение горючести строительных материалов проводят экспериментально.

Для отделочных материалов кроме характеристики горючести вводится понятие величины критической поверхностной плотности теплового потока (КППТП), при которой возникает устойчивое пламенное горение материала (ГОСТ 30402–96). В зависимости от значения КППТП все материалы подразделяются на три группы воспламеняемости:

– Bl –КППТП равна или больше 35 кВт на м2;

– В2 –больше 20, но меньше 35 кВт на м2;

– ВЗ –меньше 20 кВт на м2.

По масштабам и интенсивности пожары можно подразделить на:

– отдельный пожар, возникающий в отдельном здании (сооружении) или в небольшой изолированной группе зданий;

– сплошной пожар, характеризующийся одновременным интенсивным горением преобладающего числа зданий и сооружений на определенном участке застройки (более 50 %);

– огневой шторм, особая форма распространяющегося сплошного пожара, образующаяся в условиях восходящего потока нагретых продуктов сгорания и быстрого поступления в сторону центра огневого шторма значительного количества свежего воздуха (ветер со скоростью 50 км/ч);

– массовый пожар, образующийся при наличии в местности совокупности отдельных и сплошных пожаров.

Распространение пожаров и превращение их в сплошные пожары при прочих равных условиях определяется плотностью застройки территории объекта. О влиянии плотности размещения зданий и сооружений на вероятность распространения пожара можно судить по ориентировочным данным, приведенным ниже:

Расстояние между зданиями, м

0

5

10

15

20

30

40

50

70

90

Вероятность распространения пожара, %

100

87

66

47

27

23

9

3

2

0

Быстрое распространение пожара возможно при следующих сочетаниях степени огнестойкости зданий и сооружений с плотностью застройки: для зданий I и II степени огнестойкости плотность застройки должна быть не более 30 %; для зданий III степени –20%, для зданий IV и V степени – не более 10 %.

Влияние трех факторов (плотности застройки, степени огнестойкости здания и скорости ветра) на скорость распространения огня можно проследить на следующих цифрах:



1) при скорости ветра до 5 м/с в зданиях I и II ступени огнестойкости скорость распространения пожара составляет примерно 120 м/ч; в зданиях IV степени огнестойкости –примерно 300 м/ч, а в случае сгораемой кровли до 900 м/ч; 2) при скорости ветра до 15 м/с в зданиях I и II степени огнестойкости скорость распространения пожара достигает 360 м/с.

Средства локализации и тушения пожаров. К основным видам техники, предназначенной для защиты различных объектов от пожаров, относятся средства сигнализации и пожаротушения.

Пожарная сигнализация должна быстро и точно сообщать о пожаре с указанием места его возникновения. Наиболее надежной системой

пожарной сигнализации является электрическая пожарная сигнализа­ция- Наиболее совершенные виды такой сигнализации дополнительно обеспечивают автоматический ввод в действие предусмотренных на объекте средств пожаротушения. Принципиальная схема электриче­ской системы сигнализации представлена на рис. 8.4. Она включает пожарные извещатели, установленные в защищаемых помещениях и включенные з сигнальную линию; приемно-контрольную станцию, источник питания, звуковые и световые средства сигнализации, а также автоматические установки пожаротушения и дымоудаления.

Надежнисть алектрической системы сигнализации обеспечивается тем, чти все ее алсменты и связи между ними постоянно находятся под напряжением. Этим обеспечивается исуществление постоянного кон­троля за исправностью установки.

Важнейшим элементом системы сигнализации являются пожарные извещатели, которые преобразуют физические параметры, характери­зующие пожар, в электрические сигналы. По способу приведения в действие извещатели подразделяют на ручные и автоматические. Руч­ные извещатели выдают в линию связи электрический сигнал опреде­ленной формы в момент нажатия кнопки. Автоматические пожарные извещатели включаются при изменении параметров окружающей сре­ды в момент возникновения пожара. В зависимости от фактора, вызывающего срабатывание датчика, извещатели подразделяются на тепловые, дымовые, световые и комбинированные.


Наибольшее рас­ пространение получили тепловые нзвещатели, чувствительные элемен­ты которых могут быть биметаллическими, термопарными, полуп­роводниковыми.

Дымовые пожарные извещатели, реагирующие на дым, имеют в качестве чувствительного элемента фотоэлемент или ионизационные камеры, а также дифференциальное фотореле. Дымовые извещатели бывают двух типов: точечные, сигнализирующие о появлении дыма в месте их установки, и линейно-объемные, работающие на принципе затенения светового луча между приемником и излучателем.

Световые пожарные извещатели основаны на фиксации различных составных частей спектра открытого пламени. Чувствительные элементы таких датчиков реагируют на ультрафиолетовую или инфракрасную область спектра оптического излучения.

Инерционность первичных датчиков является важной характеристикой. Наибольшей инерционностью обладают тепловые датчики, наименьшей –световые.

Комплекс мероприятий, направленных на устранение причин возникновения пожара и создание условий, при которых продолжение горения будет невозможным, называется пожаротушением.

Для ликвидации процесса горения необходимо прекратить подачу в зону горения либо горючего, либо окислителя, или уменьшить подвод теплового потока в зону реакции. Это достигается:

– сильным охлаждением очага горения или горящего материала с помощью веществ (например воды), обладающих большой теплоемкостью;

– изоляцией очага горения от атмосферного воздуха или снижением концентрации кислорода в воздухе путем подачи в зону горения инертных компонентов;

– применением специальных химических средств, тормозящих скорость реакции окисления;

– механическим срывом пламени сильной струёй газа или воды;

– созданием условий огнепреграждения, при которых пламя распространяется через узкие каналы, сечение которых меньше тушащего диаметра.

Для достижения вышеуказанных эффектов в настоящее время в качестве средств тушения используют:

– воду, которая подается в очаг пожара сплошной или распыленной струёй;

– различные виды пен (химическая или воздушно-механическая), представляющих собой пузырьки воздуха или углекислого газа, окруженные тонкой пленкой воды;



– инертные газовые разбавители, в качестве которых могут использоваться: углекислый газ, азот, аргон, водяной пар, дымовые газы и т. д.;

– гомогенные ингибиторы – низкокипящие галогеноуглеводороды;

– гетерогенные ингибиторы – огнетушащие порошки;

– комбинированные составы.

Вода является наиболее широко применяемым средством тушения.

Обеспечение предприятий и регионов необходимым объемом воды для пожаротушения обычно производится из общей (городской) сети водопровода или из пожарных водоемов и емкостей. Требования к системам противопожарного водоснабжения изложены в СНиП 2.04.02–84 «Водоснабжение. Наружные сети и сооружения» и в СНиП 2.04.01–85 «Внутренний водопровод и канализация зданий».

Противопожарные водопроводы принято подразделять на водопроводы низкого и среднего давления. Свободный напор при пожаротушении в водопроводной сети низкого давления при расчетном расходе должен быть не менее 10 м от уровня поверхности земли, а требуемый для пожаротушения напор воды создается передвижными насосами, устанавливаемыми на гидранты. В сети высокого давления должна обеспечиваться высота компактной струи не менее 10 м при полном расчетном расходе воды и расположении ствола на уровне наивысшей точки самого высокого здания. Системы высокого давления более дорогие вследствие необходимости использовать трубопроводы повышенной прочности, а также дополнительные водонапорные баки на соответствующей высоте или устройства насосной водопроводной станции. Поэтому системы высокого давления предусматривают на промышленных предприятиях, удаленных от пожарных частей более чем на 2 км, а также в населенных пунктах с числом жителей до 500 тыс. человек.

Рис.8.5. Схема объединенного водоснабжения:

1–источник воды; 2–водоприемник; 3–станция первого подъема; 4–водоочистные сооружения и станция второго подъема; 5–водонапорная башня; 6–магистральные линии; 7– потребители воды; 8–распределительные трубопроводы; 9–вводы в здания

Принципиальная схема устройства системы объединенного водоснабжения показана на рис 8.5.


Вода из естественного источника поступает в водоприемник и далее насосами станции первого подъема подается в сооружение на очистку, затем по водоводам в пожарорегулирующее сооружение (водонапорную башню) и далее по магистральным водопроводным линиям к вводам в здания. Устройство водонапорных сооружений связано с неравномерностью потребления воды по часам суток. Как правило, сеть противопожарного водопровода делают кольцевой, обеспечивающей две линии подачи воды и тем самым высокую надежность водообеспечения.

Рис. 8.6. Спринклерная головка

Нормируемый расход воды на пожаротушение складывается из расходов на наружное и внутреннее пожаротушение. При нормировании расхода воды на наружное пожаротушение исходят из возможного числа одновременных пожаров в населенном пункте, возникающих в течение трех смежных часов, в зависимости от численности жителей и этажности зданий (СНиП 2.04.02–84). Нормы расхода и напор воды во внутренних водопроводах в общественных, жилых и вспомогательных зданиях регламентируются СНиП 2.04.01–85 в зависимости от их этажности, длины коридоров, объема, назначения.

Рис.8.7. Дренчерная головка

1–корпус; 2–дуга; 3–дефлектор; 4– розетка

Для пожаротушения в помещениях используют автоматические огнегасительные устройства. Наиболее широкое распространение получили установки, которые в качестве распределительных устройств используют спринклерные (рис. 8.6) или дренчерные (рис. 8.7) головки.

Спринклерная головка–это прибор, автоматически открывающий выход воды при повышении температуры внутри помещения, вызванной возникновением пожара. Спринклерные установки включаются автоматически при повышении температуры среды внутри помещения до заданного предела. Датчиком является сама спринклерная головка, снабженная легкоплавким замком, который расплавляется при повышении температуры и открывает отверстие в трубопроводе с водой над очагом пожара. Спринклерная установка состоит из сети водопроводных питательных и оросительных труб, установленных под перекрытием.


В оросительные трубы на определенном расстоянии друг от друга ввернуты спринклерные головки. Один спринклер устанавливают на площади 6–9 м2 помещения в зависимости от пожарной опасности производства. Если в защищаемом помещении температура воздуха может опускаться ниже +4 ° С, то такие объекты защищают воздушными спринклерными системами, отличающимися от водяных тем, что такие системы заполнены водой только до контрольно-сигнального устройства, распределительные трубопроводы, расположенные выше этого устройства в неотапливаемом помещении, заполняются воздухом, нагнетаемым специальным компрессором.

Дренчерные установки (см. рис. 8.7) по устройству близки к спринклерным и отличаются от последних тем, что оросители на распределительных трубопроводах не имеют легкоплавкого замка и отверстия постоянно открыты. Дренчерные системы предназначены для образования водяных завес, для защиты здания от возгорания при пожаре в соседнем сооружении, для образования водяных завес в помещении с целью предупреждения распространения огня и для противопожарной защиты в условиях повышенной пожарной опасности. Дренчерная система включается вручную или автоматически по сигналу автоматического извещателя о пожаре с помощью контрольно-пускового узла, размещаемого на магистральном трубопроводе.

В спринклерных и дренчерных системах могут применяться и воздушно-механические пены. Основным огнегасительным свойством пены является изоляция зоны горения путем образования на поверхности горящей жидкости паронепроницаемого слоя определенной структуры и стойкости. Состав воздушно-механической пены следующий: 90 % воздуха, 9,6 % жидкости (воды) и 0,4 % пенообразующего вещества. Характеристиками пены, определяющими ее огнегасящие свойства, являются стойкость и кратность. Стойкость–это способность пены сохраняться при высокой температуре во времени; воздушно-механическая пена имеет стойкость 30–45 мин, кратность – отношение объема пены к объему жидкости, из которой она получена, достигающая 8–12.

Получают пену в стационарных, передвижных, переносных устройствах и ручных огнетушителях.


В качестве пожаротушащего вещества широкое распространение получила пена следующего состава: 80 % углекислого газа, 19,7 % жидкости (воды) и 0,3 % пенообразующего вещества. Кратность химической пены обычно равна 5, стойкость около 1 ч.

8.4. ЛИКВИДАЦИЯ ПОСЛЕДСТВИЙ ЧС

Ликвидация чрезвычайной ситуации осуществляется силами и средствами предприятий, учреждений и организаций независимо от их организационно-правовой формы, органов местного самоуправления, органов исполнительной власти субъектов РФ, на территории которых сложилась чрезвычайная ситуация, под руководством соответствующих комиссий по чрезвычайным ситуациям.

К ликвидации ЧС могут привлекаться Вооруженные силы РФ, Войска гражданской обороны РФ, другие войска и воинские формирования в соответствии с законодательством Российской Федерации.

Ликвидация чрезвычайной ситуации считается завершенной по окончании проведения аварийно-спасательных и других неотложных работ.

Спасательные работы. Спасательные и другие неотложные работы в очагах поражения включают:

– разведку очага поражения, в результате которой получают истинные данные о сложившейся обстановке;

– локализацию и тушение пожаров, спасение людей из горящих зданий;

– розыск и вскрытие заваленных защитных сооружений, розыск и извлечение из завалов пострадавших;

– оказание пострадавшим медицинской помощи, эвакуация пораженных в медицинские учреждения, эвакуация населения из зон возможного катастрофического воздействия (затопления, радиационного и другого заражения);

– санитарная обработка людей, обеззараживание транспорта, технических систем, зданий, сооружений и промышленных объектов;

– неотложные аварийно-восстановительные работы на промышленных объектах.

Разведка в кратчайшие сроки должна установить характер и границы разрушений и пожаров, степень радиоактивного и иного вида заражения в различных районах очага, наличие пораженных людей и их состояние, возможные пути ввода спасательных формирований и эвакуации пострадавших. По данным разведки определяют объемы работ, уточняют способы ведения спасательных и аварийных работ, разрабатывают план ликвидации последствий чрезвычайного события.



В планах ликвидации последствий намечают конкретный перечень неотложных работ, устанавливают их очередность. С учетом объемов и сроков проведения спасательных работ определяют силы и средства их выполнения. В первую очередь в плане необходимо предусматривать работы, направленные на прекращение воздействия внешнего фактора на объект (если это возможно), локализацию очага поражения, постановка средств, препятствующих распространению опасности по территории объекта. Для своевременного и успешного проведения спасательных работ планируется проведение целого ряда неотложных мероприятий:

– устройство при необходимости проездов в завалах и на загрязненных участках; оборудование временных путей движения транспорта (так называемых колонных путей);

– локализация аварий на сетях коммунально-энергетических систем; восстановление отдельных поврежденных участков энергетических и водопроводных сетей и сооружений;

– укрепление и обрушение конструкций зданий и сооружений, препятствующих безопасному проведению спасательных работ.

В качестве спасательных сил используют обученные спасательные формирования, создаваемые заблаговременно, а также вновь сформированные подразделения из числа работников промышленного объекта (подразделений гражданской обороны объекта). Спасательные формирования могут быть подчинены руководству объекта или администрации района, города, области.

В качестве технических средств используют как объектовую технику (бульдозеры, экскаваторы со сменным оборудованием, автомобили-самосвалы, автогрейдеры, моторные и прицепные катки, пневматический инструмент и т. д.), так и спецтехнику, находящуюся в распоряжении спасательных формирований (специальные подъемно-транспортные машины, корчеватели-собиратели, ручной спасательный инструмент, бетоноломы, средства контроля и жизнеобеспечения).

Особое место в организации и ведении спасательных работ занимает поиск и освобождение из-под завалов пострадавших. Их поиск начинается с уцелевших подвальных помещений, дорожных сооружений, уличных подземных переходов, у наружных оконных и лестничных приямков, околостенных пространств нижних этажей зданий; далее обследуется весь, без исключения, участок спасательных работ.


Люди могут находиться также в полостях завала, которые образуются в результате неполного обрушения крупных элементов и конструкций зданий. Такие полости чаще всего могут возникать между сохранившимися стенками зданий и неплотно лежащими балками или плитами перекрытий, под лестничными маршами.

Спасение людей, попавших в завалы, начинают с тщательного осмотра завала, при этом устраняют условия, способствующие обрушению отдельных конструкций. Далее пытаются установить связь с попавшими в завалы (голосом или перестукиванием). В завалах проделывают проход сбоку или сверху с одновременным креплением неустойчивых конструкций и элементов. Подходы к людям, находящимся в завале, следует вести возможно быстрее, избегая трудоемких работ и используя полости в завалах, сохранившиеся помещения, коридоры и проходы. Всегда следует помнить, что использование для разборки завалов тяжелой техники резко ускоряет процесс, но может нанести непоправимый вред пострадавшим.

Значительная часть работ в очаге поражения приходится на локализацию и ликвидацию пожаров. Эти работы производят формирования пожаротушения системы гражданской обороны, штатные пожарные части промышленных объектов, пожарные части территориального подчинения во взаимодействии со спасательными формированиями.

Очень важно как можно быстрее оценить обстановку, предугадать развитие пожаров и на этой основе принять правильное решение по их локализации и тушению. При локализации на пути распространения огня (с учетом направления ветра) устраивают отсечные полосы: на направлении распространения пожара разбирают или обрушивают сгораемые конструкции зданий, полностью удаляют из отсечной полосы легковозгораемые материалы и сухую растительность: для создания отсечной полосы шириной до 50–100 м необходима дорожная техника (бульдозеры, грейдеры и т. д.).

Пожарные подразделения в первую очередь тушат и локализуют пожары там, где находятся люди. Одновременно с тушением пожаров эвакуируют людей. При отыскивании и эвакуации из горящего здания людей можно пользоваться некоторыми правилами:



– пожар в здании распространяется преимущественно по лифтовым шахтам, лестничным клеткам, по вентиляционным коробам;

– целые оконные проемы в горящем здании свидетельствуют о том, что в этом помещении нет людей или они не в состоянии добраться до окон;

– сильное пламя в оконных проемах свидетельствует о полном развитии пожара при большом количестве сгораемых материалов;

– сильное задымление без пламени – признак быстрого распространения огня скрытыми путями и по конструкциям; если при этом дым густой и темный, то это означает горение при недостатке кислорода.

Работам по ликвидации очагов поражения СДЯВ, как правило, предшествуют или проводятся одновременно мероприятия, направленные на снижение величины выброса и растекания СДЯВ на местности, уменьшения интенсивности испарения ядовитых веществ и снижение глубины распространения зараженного воздуха. Для этого проводят работы по:

– ограничению и приостановлению выброса СДЯВ путем перекрытия кранов и задвижек на магистралях подачи СДЯВ к месту аварии, заделывание отверстий на магистралях и емкостях, перекачка жидкости из аварийной емкости в резервную;

– обваловывание мест разлива СДЯВ, устройство ловушек при отсутствии обваловки или поддонов для емкостей;

– сбор разлившейся СДЯВ в закрытые резервные емкости (при наличии обваловки или поддонов);

– постановка отсечных водяных завес на пути распространения облака зараженного воздуха (для снижения глубины его распространения);

– изоляция зеркала разлива СДЯВ пеной, поглощение ядовитых веществ адсорбентами.

После проведения этих мероприятий обеззараживают территории.

Определение материального ущерба и числа жертв. Нанесенный ЧС материальный ущерб складывается из прямого (разрушение промышленных объектов) и косвенного ущербов (недополученный доход, товары, материальные ценности).

Для определения прямого ущерба необходимо знать стоимость основных фондов производства до и после момента наступления ЧС. Их разность и есть размер прямого материального ущерба. Для его определения необходимо располагать данными о степени поражения объекта.


Она определяется, исходя либо из численного значения пораженной площади объекта по отношению к его общей площади, либо числа пораженных элементов этого объекта к их общему числу. Поскольку предусмотреть место возникновения и масштаб чрезвычайного события на объекте невозможно, то применяют стохастическую основу для определения степени поражения объекта. Для площадного объекта (отношение фасадной ширины объекта к его глубине не превышает 2:1) она является математическим ожиданием случайной величины, которая может принимать различные значения при соответствующих вероятностях: средняя величина D = DiPi.

Так, для нахождения степени поражения (разрушения) объекта от взрывов при авариях нужно рассматривать зоны всех степеней разрушения, пользуясь упрощенной формулой

где D – степень поражения промышленного объекта; Sпор = Sкруг – площадь объекта, подвергнувшаяся разрушению, км2; Sобщ–общая площадь объекта, км2; Nпop–число пораженных элементов объекта (зданий, цехов, сооружений, систем); Nобщ–общее число элементов объекта.

Значения D в зависимости от степени поражения объекта представлены в табл. 8.3.

Таблица 8.3. Степень поражения объекта в зависимости от объема разрушений

Степень поражения D

Степень разрушения

Объем разрушений, %

<0,2

<0,2…0,5

<0,5…0,8

>0,8

Слабая

Средняя

Сильная

Полная

Отдельные элементы

До 30

30…50

50…100

Для определения числа жертв можно использовать следующее выражение:

Пп = SпopLc/So6щ,

где Пп –число жертв при внезапном взрыве; Lc –численность работающих данной смены (всего предприятия).

Ущерб и число жертв при ЧС подсчитывают, как правило, при проведении комплекса спасательных работ или после них.

План ремонтно-восстановительных работ. Готовность предприятия к выполнению восстановительных работ оценивается наличием проектно-технической документации по вариантам восстановления, обеспеченностью рабочей силой и материальными ресурсами.

Планирование восстановления работоспособности предприятия может предусматривать как первоочередное восстановление, так и капитальное.


Первое может быть выполнено силами самого объекта создающего для этих целей восстановительные бригады. В проекте восстановления освещаются следующие вопросы:

– объем работ по восстановлению с расчетом потребностей в рабочей силе, материалах, строительной технике, оборудовании деталях, инструменте;

– оптимальные инженерные решения по восстановлению работоспособности предприятия;

– календарный план или сетевой график восстановительных работ, очередность восстановления цехов, исходя из важности их в выпуске основной продукции;

– состав восстановительных бригад и др.

Методика определения сроков проведения восстановительных работ изложена в СН 440–72.

Раздел IV

УПРАВЛЕНИЕ БЕЗОПАСНОСТЬЮ ЖИЗНЕДЕЯТЕЛЬНОСТИ

9. ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ

9.1. ПРАВОВЫЕ И НОРМАТИВНО-ТЕХНИЧЕСКИЕ ОСНОВЫ

Законы и подзаконные акты. Правовую основу обеспечения безопасности жизнедеятельности составляют соответствующие законы и постановления, принятые представительными органами Российской Федерации (до 1992 г. РСФСР) и входящих в нее республик, а также подзаконные акты: указы президентов, постановления, принимаемые правительствами Российской Федерации (РФ) и входящих в нее государственных образований, местными органами власти и специально уполномоченными на то органами. Среди них прежде всего Министерство природных ресурсов РФ, Государственный комитет РФ по охране окружающей среды, Министерство труда и социального развития РФ, Министерство здравоохранения РФ, Министерство РФ по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий и их территориальные органы.

Правовую основу охраны окружающей среды в стране и обеспечение необходимых условий труда составляет закон РСФСР «О санитарно-эпидемиологическом благополучии населения» (1991 г.), в соответствии с которым введено санитарное законодательство, включающее указанный закон и нормативные акты, устанавливающие критерии безопасности и (или) безвредности для человека факторов среды его обитания и требования к обеспечению благоприятных условий его жизнедеятельности.


Ряд требований по охране труда и окружающей среды зафиксировано в законе РСФСР «О предприятиях и предпринимательской деятельности» (1991 г.) и в законе РФ «О защите прав потребителей» (1992 г.).

Важнейшим законодательным актом, направленным на обеспечение экологической безопасности, является закон РСФСР «Об охране окружающей природной среды» (1991 г., введен в действие с 3.02.1992 г.).

Из других законодательных актов в области охраны окружающей среды отметим Водный кодекс РФ (1995 г.), Земельный кодекс РСФСР (1991 г.), законы Российской Федерации «О недрах» (1992 г.) и «Об экологической экспертизе» (1995 г.). До принятия соответствующих документов РФ продолжает действовать закон СССР «Об охране атмосферного воздуха» (1980 г.).

Среди законодательных актов по охране труда отметим Основы законодательства РФ по охране труда (1993 г) и Кодекс законов о труде РСФСР (с изменениями и дополнениями 1992 г.), устанавливающие основные правовые гарантии в части обеспечения охраны труда.

Правовую основу организации работ в чрезвычайных ситуациях и в связи с ликвидацией их последствий составляют законы РФ «О защите населения и территории от чрезвычайных ситуаций природного и техногенного характера» (1994 г.), «О пожарной безопасности» (1994 г.), «Об использовании атомной энергии» (1995 г.). Среди подзаконных актов в этой области отметим постановление правительства РФ «О единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций» (1995 г.).

Нормативно-техническая документация (НТД). Эта документация по охране окружающей среды включает федеральные, республиканские, местные санитарные нормы и правила Министерства здравоохранения РФ, строительные нормы и правила Комитета по строительной, архитектурной и жилищной политике РФ, систему стандартов «Охрана природы», документы Министерства природных ресурсов РФ, Государственного комитета РФ по охране окружающий среды, Федеральной службы России по гидрометеорологии и мониторингу окружающей среды. Эти ведомства частично используют документацию организаций, правоприемниками которых они являются Минздрава СССР, Госстроя СССР, Госстандарта СССР, Госкомприроды СССР и Госгидромета СССР.



Санитарные нормы устанавливают ПДК загрязняющих веществ в атмосферном воздухе и в воде различного назначения, а также предельные уровни физических воздействий на окружающую среду (шума, вибрации, инфразвука, электромагнитных полей и излучений от различных источников, ионизирующих излучений).

В системе строительных норм и правил рассмотрены нормы проектирования сооружений различного назначения, учитывающие требования охраны окружающей среды и рационального природопользования. В группе 12 части 2 системы представлены нормы отвода земель под различные строительные объекты. Особо отметим СНиП 2.04.03–85 «Канализация. Наружные сети и сооружения», в котором подробно рассмотрены мероприятия и устройства по очистке сточных вод, их обеззараживанию, а также по утилизации осадков, полученных при очистке (группа 04 части 2 системы СНиПов).

Система стандартов «Охрана природы» – составная часть государственной системы стандартизации (ГСС), ее 17-я система. Система стандартов в области охраны природы и улучшения использования природных ресурсов–совокупность взаимосвязанных стандартов, направленных на сохранение, восстановление и рациональное использование природных ресурсов. Эта система разрабатывается в соответствии с действующим законодательством с учетом экологических, санитарно-гигиенических, технических и экономических требований.

Система стандартов в области охраны природы состоит из 10 комплексов стандартов. Кодовое название комплекса: 0 – организационно-методические стандарты; 1 –гидросфера, 2–атмосфера, 3 –биологические ресурсы, 4 –почвы, 5 –земли, 6 –флора, 7 – фауна, 8–ландшафты, 9–недра. Каждый комплекс стандартов, начиная с комплекса «гидросфера» и кончая комплексом «недра», включает в себя шесть групп стандартов (табл. 9.1).

Таблица 9.1. Классификация системы стандартов в области охраны природы

Шифр группы

Группа стандартов

0

     Основные положения

1

     Термины, определения, классификация

2

     Показатели качества природных сред, параметры загрязняющих выбросов и сбросов и показатели интенсивности использования природных ресурсов

3

     Правила охраны природы и рационального использования природных ресурсов

4

     Методы определения параметров состояния природных объектов и интенсивности хозяйственных воздействий

5

     Требования к средствам контроля и измерений состояния окружающей природной среды

6

     Требования к устройствам, аппаратам и сооружениям по защите окружающей среды от загрязнений

7

     Прочие стандарты

<


Обозначение стандартов в области охраны природы состоит из номера системы по классификатору, шифра комплекса, шифра группы, порядкового номера стандарта и года регистрации стандарта. Так, стандарт на предельно допустимый выброс СО бензиновых двигателей автомобилей стоит в комплексе 2 группа 2, обозначение его ГОСТ 17.2.2.03–87.

Нормативно-техническая документация по охране труда включает правила по технике безопасности и производственной санитарии, санитарные нормы и правила, стандарты системы стандартов безопасности труда, инструкции по охране труда для рабочих и служащих.

Согласно ст. 143 КЗОТ РСФСР правила по охране труда подразделяются на единые, межотраслевые и отраслевые. Единые распространяются на все отрасли экономики. Они закрепляют важнейшие гарантии обеспечения безопасности и гигиены труда, которые одинаковы для всех отраслей. Межотраслевые закрепляют важнейшие гарантии обеспечения безопасности и гигиены труда в нескольких отраслях, либо в отдельных видах производства, либо при отдельных видах работ (например, на отдельных типах оборудования во всех отраслях).

Инструкции по охране труда делятся на типовые (для рабочих основных профессий отраслей) и действующие в масштабах предприятия, организации или учреждения.

Система стандартов безопасности труда (ССБТ) –одна из систем государственной системы стандартизации (ГСС). Шифр (номер) этой системы ГСС–12. В рамках этой системы производятся взаимная увязка и систематизация всей существующей нормативной и нормативно-технической документации по безопасности труда, в том числе многочисленных норм и правил по технике безопасности и производственной санитарии как федерального, так и отраслевого значения. ССБТ представляет собой многоуровневую систему взаимосвязанных стандартов, направленную на обеспечение безопасности труда.

Стандарты подсистемы 0 устанавливают: цель, задачи, область распространения, структуру ССБТ и особенности согласования стандартов ССБТ; терминологию в области охраны труда; классификацию опасных и вредных производственных факторов; принципы организации работы по обеспечению безопасности труда в промышленности.


Большую часть этой подсистемы составляют стандарты предприятий (СТП).

Объектами стандартизации на предприятиях являются: организация работ по охране труда, контроль состояния условий труда, порядок стимулирования работы по обеспечению безопасности труда; организация обучения и инструктажа работающих по безопасности труда; организация контроля за безопасностью труда и всех других работ, которыми занимается служба охраны труда.

Стандарты подсистемы 1 устанавливают требования по видам опасных и вредных производственных факторов и предельно допустимые значения их параметров; методы и средства защиты работающих от их воздействия; методы контроля уровня указанных факторов. Стандарты подсистемы 2 устанавливают: общие требования безопасности к производственному оборудованию; требования безопасности к отдельным группам производственного оборудования; методы контроля выполнения этих требований.

Стандарты подсистемы 3 устанавливают общие требования безопасности к производственным процессам, к отдельным группам технологических процессов; методы контроля выполнения требований безопасности. Стандарты подсистемы 4 устанавливают требования безопасности к средствам защиты; подсистемы 5 – к зданиям и сооружениям.

В ССБТ принята следующая система обозначений (рис. 9.1).

Таким образом, если нас интересуют требования безопасности к электросварочным работам, ищем стандарт класса 12 подсистемы 3 (производственные процессы), где он фигурирует под номером 3 (ГОСТ 12.3.003–86*). Стандарт требований к защитному заземлению и занулению (их применению, устройству) следует искать в подсистеме 1 – это ГОСТ 12.1.030–81* «ССБТ. Электробезопасность. Защитное заземление, зануление». Нельзя путать стандарты такого рода со стандартами требований безопасности к средствам защиты (подсистема 4), например, ГОСТ 12.4.021–75* «ССБТ. Системы вентиляционные. Общие требования». Стандарт на обучение работающих безопасности труда, метрологическое обеспечение охраны труда следует искать в подсистеме 0 как стандарты на организационные вопросы.


Это ГОСТ 12.0.004–90 и ГОСТ 12.0.005–84.

Рис.9.1. Система обозначений в ССБТ

Если перечень методов и средств защиты, необходимых для обеспечения требований безопасности по рассматриваемому фактору оказывается емким, его стандартизуют в рамках отдельного стандарта подсистемы 1. Примером такого документа является ГОСТ 12.1.029–80 «ССБТ. Средства и методы защиты от шума. Классификация». Так же поступают при информативно емких методах контроля требований безопасности. Так, в подсистеме 1 имеются отдельные стандарты на метод измерения на рабочих местах шума (ГОСТ 12.1.050–86), шумовых характеристик машин (ГОСТ 12.1.023–80*, ГОСТ 12.1.024–81*, ГОСТ 12.1.025–81*, ГОСТ 12.0.026–80; ГОСТ 12.1.027–80, ГОСТ 12.1.028–80) и т. д.

Требования безопасности устанавливают применительно к производственному, а не технологическому оборудованию, к производственным, а не технологическим процессам. Так, требования ГОСТ 12.2.009–80* «ССБТ. Станки металлообрабатывающие. Общие требования безопасности» относятся к станкам всех типов (токарным, сверлильным, шлифовальным, заточным и т. п.); ГОСТ 12.3.025–80* «ССБТ. Обработка металлов резанием. Требования безопасности» относится ко всем видам металлообработки резанием.

Стандарты предприятий по безопасности труда разрабатываются непосредственно на предприятии и согласовываются с профсоюзным комитетом. Они регламентируют принципы работ по обеспечению безопасности труда: организацию контроля условий труда; надзора за установками повышенной опасности; обучение работающих безопасности труда; аттестации лиц, обслуживающих установки повышенной опасности, проведение аттестации рабочих мест на предприятии и т. д.

Основные нормативно-технические документы по чрезвычайным ситуациям объединены в комплекс стандартов «Безопасность в чрезвычайных ситуациях» (БЧС).

Основные цели комплекса:

– повышение эффективности мероприятий по предупреждению и ликвидации ЧС на всех уровнях (федеральном, региональном, местном) для обеспечения безопасности населения и объектов народного хозяйства в природных, техногенных, биолого-социальных и военных ЧС; предотвращение или снижение ущерба в ЧС;



– эффективное использование и экономия материальных и трудовых ресурсов при проведении мероприятий по предупреждению и ликвидации ЧС.

Задача комплекса – установление:

– терминологии в области обеспечения безопасности в ЧС, номенклатуры и классификации ЧС, источников ЧС, поражающих факторов;

– основных положений по мониторингу, прогнозированию и предотвращению ЧС, по обеспечению безопасности продовольствия, воды, сельскохозяйственных животных и растений, объектов народного хозяйства в ЧС, по организации ликвидации ЧС;

– уровней поражающих воздействий, степеней опасности источников

ЧС;

– методов наблюдения, прогнозирования, предупреждения и ликвидации ЧС;

– способов обеспечения безопасности населения и объектов народного хозяйства, а также требований к средствам, используемым для этих целей.

Обозначение отдельного стандарта в комплексе состоит из индекса (ГОСТ Р), номера системы по классификатору (ГСС–22), номера (шифра) группы (табл. 9.2), порядкового номера стандарта в группе и года утверждения или пересмотра стандарта. Например, ГОСТ Р 22.0.01–94. Безопасность в чрезвычайных ситуациях. Основные положения.

Стандарты группы 0 устанавливают:

– основные положения (назначение, структуру, классификацию) комплекса стандартов;

– основные термины и определения в области обеспечения безопасности в ЧС;

– классификацию ЧС;

Таблица 9.2. Классификация стандартов, входящих в комплекс стандартов БЧС

Номер группы

Группа стандартов

Кодовое наименование

0

     Основополагающие стандарты

     Основные положения

1

     Стандарты в области мониторинга и прогнозирования

     Мониторинг и прогнозирование

2

     Стандарты в области обеспечения безопасности объектов народного хозяйства

     Безопасность объектов народного хозяйства

3

     Стандарты в области обеспечения безопасности населения

     Безопасность населения

4

     Стандарты в области обеспечения безопасности продовольствия, пищевого сырья и кормов

     Безопасность продовольствия

5

     Стандарты в области обеспечения безопасности сельскохозяйственных животных и растений

     Безопасность животных и растений

6

     Стандарты в области обеспечения безопасности водоисточников и систем водоснабжения

     Безопасность воды

7

     Стандарты на средства и способы управления, связи и оповещения

     Управление, связь, оповещение

8

     Стандарты в области ликвидации чрезвычайных ситуаций

     Ликвидация чрезвычайных ситуаций

9

     Стандарты в области технического оснащения аварийно-спасательных формирований, средств специальной защиты и экипировки спасателей

     Аварийно-спасательные средства

10,11

     Резерв

<


– классификацию продукции, процессов, услуг и объектов народного хозяйства по степени их опасности;

– номенклатуру и классификацию поражающих факторов и воздействий источников ЧС;

– предельно допустимые уровни (концентрации) поражающих факторов и воздействий источников ЧС;

– основные положения и правила метрологического контроля состояния технических систем в ЧС.

Содержание остальных групп стандартов определяется их кодовым наименованием (см. табл. 9.2).