Обзор методов описания встраиваемой аппаратуры

         

В современном мире все большее


В современном мире все большее распространение получают системы на основе встраиваемых процессоров, предназначенных для эффективного выполнения узкого класса задач в условиях жестких ограничений на соотношение производительности, энергопотребления, размера и стоимости изготовления кристалла. Такие системы можно встретить практически в каждом электронном устройстве, начиная от бытовой техники и кончая самолетами и военными комплексами. При этом большую популярность приобретает подход к построению встраиваемых систем на основе расширяемых процессоров, включающих некоторое базовое микропроцессорное ядро (soft core), которое дополняется в процессе проектирования специфическими для конкретной системы расширениями в виде сопроцессоров и/или дополнительных функциональных блоков, расширяющих систему команд и подсистему памяти ядра. При таком подходе одно и то же ядро повторно используется в системах различного назначения, существенно сокращая затраты на проектирование. При этом использование специализированных для каждой системы расширений обеспечивает высокую техническую эффективность в смысле баланса указанных выше показателей.
В процессе создания встраиваемых систем важнейшую роль играет инструментарий кросс-разработки, позволяющий выполнять разработку, отладку и профилирование программ для целевой системы с использованием инструментальной машины с отличной от целевой архитектурой. Основными компонентами такого инструментария являются ассемблер, компоновщик, симулятор, отладчик и профилировщик. В качестве инструментальной машины, как правило, выступает обычная рабочая станция. В отличие от производства реальных микросхем, для построения кросс-инструментария достаточно некоторого высокоуровневого описания целевой системы – прежде всего структуры памяти/регистров и системы команд с временными характеристиками исполнения. Это делает возможным раннее создание инструментария кросс-разработки еще в процессе проектирования аппаратуры. Использование кросс-инструментария на этом этапе играет ключевую роль при решении следующих задач:



  1. Прототипирование целевой аппаратуры и исследование проектных альтернатив (design space exploration) – разработка набора типовых тестов (т.е. программ для целевой машины), их запуск и профилирование на различных вариантах аппаратуры позволяет получать оценки эффективности того или иного проектного варианта и принимать решения о выработке новых улучшений, например, оптимизации системы команд ядра, добавлении / удалении тех или иных функциональных блоков, регистров и сопроцессоров.
  2. Раннее создание приложений – программное обеспечение для целевой платформы должно быть создано и предварительно отлажено еще до появления реальной аппаратуры. Это необходимо для сокращения времени выхода на рынок полного решения в виде «аппаратура + программы».
  3. Верификация спецификаций аппаратуры – использование построенного кросс-симулятора позволяет проводить его взаимную верификацию с симуляторами, полученными на основе точной VHDL/Verilog спецификации целевой системы (после того, как такая спецификация будет создана на позднем этапе проектирования). Такая верификация играет важную роль в процессе финального обеспечения качества перед запуском аппаратуры в производство.

Конечно, важно, чтобы после завершения проектирования аппаратуры полученные кросс-инструменты были пригодны для собственно производственного применения при дальнейшей разработке реальных приложений.
В данной статье будут рассмотрены различные современные средства описания моделей аппаратуры, пригодные для построения на основе таких описаний соответствующих кросс-инструментов. При рассмотрении таких методов создания кросс-инструментария будем иметь в виду следующие «идеальные» требования.

  1. Получаемый кросс-инструментарий должен обладать высокой скоростью работы (десятки миллионов модельных тактов в секунду на современных рабочих станциях) и потактовой точностью
    моделирования.
  2. В процессе построения должен обеспечиваться быстрый цикл внесения согласованных изменений в кросс-инструменты для отражения различных вариантов аппаратной системы, возникающих как в процессе проектирования ядра, так и в процессе разработки расширений и выборе конфигурации полной системы.
  3. В случае расширяемой аппаратуры необходима возможность разделения разработки базового инструментария (для базового ядра) и соответствующих модулей/инструментов для различных расширений с возможностью комбинации соответствующих компонентов при построении расширенного инструментария для полной системы 1.

Применение такого «идеального» метода позволило бы эффективно решать поставленные выше задачи прототипирования расширяемой аппаратуры с потактовой точностью, верификации VHDL/Verilog моделей и собственно разработки реальных приложении как на этапе проектирования, так и на этапе эксплуатации аппаратуры.
Статья состоит из введения, трех разделов и заключения. Во втором разделе рассматривается процесс проектирования встраиваемых систем и описывается роль инструментария кросс-разработки. В разделе 3 дается обзор языков для описания моделей встраиваемых систем и соответствующих методов получения инструментария кросс-разработки на основе таких описаний. В четвертом разделе проводится сравнительный анализ рассмотренных решений. В заключении подводятся итоги и предлагаются направления создания новых методов.

Содержание раздела